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Abstract. Recent experimental data of anisotropic magnetoresistivity measured in MgB2 films have shown
an intriguing behaviour: the angular dependence of magnetoresistivity changes dramatically with temper-
ature and disorder. In order to explain such phenomenology, in this work, we extend our previous analyses
on multiband transverse magnetoresistivity in magnesium diboride, by calculating its analytic expression,
assuming a constant anisotropic Fermi surface mass tensor. The calculation is done for arbitrary orientation
of the magnetic field with respect to the crystalline axes and for the current density either perpendicular
or parallel to the magnetic field. This approach allows to extract quite univocally the values of the scat-
tering times in the σ- and π-bands by fitting experimental data with a simple analytic expression. We also
extend the analysis to the magnetoresistivity of polycrystalline samples, with an arbitrary angle between
the current density and the magnetic field, taking into account the anisotropy of each randomly oriented
grain. Thereby, we propose magnetoresistivity as a very powerful characterization tool to explore the effect
of disorder by irradiation or selective doping as well as of phonon scattering in each one of the two types
of bands, in single crystals and polycrystalline samples, which is a crucial issue in the study of magnesium
diboride.

PACS. 74.70.Ad Metals; alloys and binary compounds (including A15, MgB2, etc.) – 75.47.Np Metals
and alloys

1 Introduction

The study of superconductivity in magnesium diboride
has shown that the presence of two types of bands cross-
ing the Fermi level has many implications in terms of
normal state and superconducting properties [1,2]. Two
bands, the π1- and π2-bands, are formed by the pz or-
bitals of boron atoms; they are weakly coupled to the
phonons, they have three-dimensional character, one of
them has electron-like charge carriers and the other one
has hole-like ones. The other two bands, the σ1- and
σ2-bands, are formed by sp2-hybridized orbitals stretched
along boron-boron bonds and are two-dimensional, hole-
type and strongly coupled with the optical E2g phonon
mode. Due to inhibition of interband scattering by the dif-
ferent parity of the π and σ types of bands, transport may
occur predominantly in either π- or σ-bands depending on
the ratio of the scattering times β = τπ/τσ. This ratio is a
crucial parameter in that many physical properties change
dramatically depending on the π or σ character of the
sample, for example, infrared reflectivity [3], microwave
conductivity [4] and upper critical field [5,6]; hence the
importance of having a simple experimental method of
determining the ratio β.
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Magnetoresistivity is a powerful tool for exploring di-
rectly the shape of the Fermi surface of metals, which is
intimately related to transport coefficients as well as to
equilibrium and optical properties. Moreover, the informa-
tion about the electronic band structure contained in the
Fermi surface, are of particular interest to theoreticians
who carry out first-principles band structure calculations.

Magnesium diboride exhibits positive magnetoresistiv-
ity, which may be large in clean samples. Measured values
are scattered within a broad range, depending on the sam-
ple purity and different scattering times ratios [7–12].

Due to its sensitivity to disorder, magnetoresistivity
has proven to be a unique tool to determine the ratio
of scattering times in π- and σ-bands in magnesium di-
boride polycrystalline [11] and epitaxial thin films [12]. In
fact, it is not affected by uncertainties related to unknown
geometrical factors as it is the case of resistivity in poly-
crystalline samples with poor intergrain connectivity, nor
it requires interpretative models valid only within a lim-
ited range of parameters, as it is the case of upper critical
field [13]. In particular, it has been shown that anisotropic
magnetoresistivity measurements in epitaxial thin films
exhibit a crossover: the magnetoresistivity in the configu-
ration with B perpendicular to the ab planes is larger than
in the configuration with B parallel to the boron planes
(ab planes in the following) for small β values, while it
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becomes smaller with increasing β, that means as σ-bands
become dirtier relative to π-bands.

Recent experimental data of magnetoresistivity as a
function of magnetic field, magnetic field orientation and
temperature, carried out on extremely clean epitaxial thin
films [14], have shown a pretty rich phenomenology. At low
temperatures just above the superconducting transition,
the magnetoresistivity is minimum when the field is paral-
lel to the ab planes, it reaches a maximum at intermediate
angles and it slightly decreases again as the field direction
approaches 90◦ with respect to the ab planes. At larger
temperatures this trend reverses and eventually at 120 K
the opposite behavior is observed: the magnetoresistance
is maximum when the field is parallel to the ab planes and
minimum when it is perpendicular.

Motivated by these experimental findings, we calcu-
late the anisotropic transverse magnetoresistivity, with
the magnetic field forming a generic angle ϑ with boron
planes. Using an analytical expression derived from the
Boltzmann equation, assuming a constant anisotropic
mass tensor on each Fermi surface sheet, with different
in-plane and out-of-plane effective masses, we reproduce
the rich phenomenology of experimental magnetoresistiv-
ity data.

Furthermore, we extend this approach to bulk samples
with randomly oriented grains and we propose to carry
out experimental measurements of both longitudinal and
transverse magnetoresistivity, to which the predicted re-
sults should be applied.

2 Calculation of magnetoresistivity of single
crystals

As it is well-known [15], for a metal with a single, spheri-
cally symmetric band, the standard Boltzmann’s equation
approach yields no transverse magnetoresistivity. Oppo-
sitely, when two or more bands cross the Fermi level and
the charge carriers carry out significant portions of cy-
clotron orbits before being scattered from one band to
another, a non vanishing positive magnetoresistivity ap-
pears. In general, the contributions to magnetoresistiv-
ity of bands with different types of carriers — holes or

electrons — add, whereas the contributions of bands with
the same type of carriers subtract and eventually vanish,
if the respective mobilities are identical. This makes the
multiband magnetoresistivity dramatically sensitive to the
presence of bands with different type of carriers or differ-
ent mobilities. For this reason, in the case of magnesium
diboride, we have necessarily to include the contribution
of all of the four bands. In particular, the fact that π1-
and π2-bands are electron-like and hole-like respectively,
as well as the fact that σ1- and σ2-bands have different ef-
fective masses seriously affects magnetoresistivity, making
a two-band calculation inadequate to describe experimen-
tal data: all the four bands have to be taken into account.

From Boltzmann equation, in presence of electric and
magnetic fields E and B, whose intensity is not large
enough that quantum effects should be considered, for
each band i, the following equation for the unknown cur-
rent density Ji is obtained [16]:

E = σ̃−1
i Ji + B× µ̃iσ̃

−1
i Ji (1)

where σ̃−1
i is the inverse conductivity tensor and µ̃i is the

electric mobility tensor of the ith band (in the following µ̃i

has the units of an inverse magnetic field); they are related
to each other by the carrier concentrations per unit cell in
the ith band ni by µ̃i = V σ̃i/(nie), being V the unit cell
volume and e the electron charge with sign (positive for
holes and negative for electrons). The three components
of the current density can be obtained by summing the
contributions of the corresponding components of all the
bands. In order to extract the transverse magnetoresistiv-
ity in the configuration illustrated in Figure 3a (configu-
ration (1), with the current in the ab plane, along the x
direction perpendicular to B), the condition must be im-
posed that the total current is zero both in the direction
parallel to B and in the direction perpendicular to the
B−x plane: the resistivity ρ(B) is obtained as the ratio of
the electric field component along the direction of the ap-
plied current to the applied current density. The resulting
expression for the total inverse resistivity, in configuration
(1), is:

see equation above
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The first term in equation (2) is associated to the electric
field parallel to the applied current (Ex with reference to
the axes of Fig. 3a), while the other terms are associated
to the electric field components along the other transverse
direction and along the direction of B. Approximate Fermi
surface average values of the effective masses and carrier
concentrations per unit cells are taken from band structure
calculations of Profeta et al. [17]. The effective masses are
defined for each band and cartesian direction as
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denotes the average value of the inverse mass tensor taken
over the Fermi surface, V is the unit cell volume and Ni(ε)
are the partial density of states per unit cell of each band
Ni(ε) = V

∫
BZ

d�k
4π3 δ(ε− εi(	k)) (the integral over 	k here is

performed over the entire Brillouin zone (BZ)). The car-
rier concentrations per unit cell are ni =

∫ εF

−∞ Ni(ε)dε for
electrons bands and ni =

∫∞
εF

Ni(ε)dε for holes bands.
The energy bands are interpolated by a spline fit [18]
on the ab initio energy bands and the integration over
the Fermi surface are performed by the linear tetrahe-
dron method [19]. As a result, we assume for the effective
masses and carrier densities the values listed in Table 1,
where all the effective masses are expressed in units of the
free electron mass m0 = 9.1×10−31 Kg. We note that the
values of the effective masses in σ-bands along the c axis
may be questionable, indeed, the curvature in the tubular
sheets even changes sign along the c direction; actually, it
is questionable the use of the effective mass approximation
at all in this case. However, since such mσ1(c) and mσ2(c)

values are much larger than all the other effective mass
values, the contribution to transport of σ-bands along the
c direction is very small and the calculated numerical val-
ues of magnetoresistivity curves are largely independent
of this choice as well.

In the general case, the matricial equation (1) can only
be solved by expanding in series of B; instead, within
our approximation of constant average mass tensor, equa-
tion (2) is obtained without any truncations, so that it
is valid to all orders in B. Indeed, a saturation regime at
high fields is reached, as presented in the following section.

Table 1. Effective masses for both crystal directions, as well
as charge densities per unit cell, for all four bands of MgB2

crossing the Fermi surface.

Band meff /m0 n
‖ ab planes ‖ c axis

σ1 0.335 66.41 0.051
σ2 0.755 212.02 0.100
π1 0.879 0.628 0.265
π2 1.077 0.305 0.114

Considering an average scattering time τπ in π1- and
π2-bands and similarly an average scattering time τσ in
both σ-bands, all the mobility values scale as the inverse
ratio of the respective masses multiplied by the ratio of
the respective scattering times. The mobilities of the four
bands can be expressed in terms of only two free param-
eters which we define as the ratio of the scattering times
β = τπ/τσ and the scaling factor α = |µ(c)π1|:

µi(dir) = ±α · mπ1(c)

mi(dir)

τi

τ
π

where i = π1, π2, σ1 or σ2 and (dir) = (ab) or (c). (3)

The charge carrier densities ni enter the calculation by
relating the mobility and the conductivity of each band
and direction µi(dir) = V σi(dir)

/
(nie) (where i = π1, π2,

σ1 or σ2 and (dir) = (ab) or (c)).
The fitting parameters α and β determine not only

magnetoresistivity curves, but also the calculated total in-
plane resistivity of the sample in zero field ρ(ab):
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Its comparison with the experimental resistivity value in
zero field provides a further constraint in the fitting.

3 Results and discussion

In Figure 1, the curves for the magnetoresistivity
(ρ(B) − ρ(0))/ρ(0) obtained from equation (2) are plotted
as a function of the squared magnetic field for three differ-
ent angles between the applied field B and the ab planes
and for different values of the parameters β = τπ/τσ and
α = |µ(c)π1|. In particular β increases from top to bot-
tom, that is the σ-bands become increasingly dirty with
respect to the π ones; the parameter α is chosen in such a
way that the in-plane resistivity of the sample ρ(ab) given
by equation (4) is 1 µΩ cm in all cases, which is a typi-
cal value for clean thin films [20]. It can be seen that for
low values of β the magnetoresistivity in the configuration
B⊥ab (ϑ = 90◦) is larger than in the configuration B||ab
(ϑ = 0◦) while for large enough β values the opposite is
true. Moreover, for intermediate values of β the magne-
toresistivity is non monotonic with the angle ϑ. Finally, it
is worth to note that in the configuration B||ab (ϑ = 0◦),
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Fig. 1. Calculated magnetoresistivity curves for the B⊥ab
(ϑ = 90◦), B||ab (ϑ = 0◦) and ϑ = 45◦ configurations for
4 different values of the parameter β = τπ/τσ equal to 0.2, 1.5,
5.0 and 10.0 from the top panel to the bottom one and for val-

ues of the parameter α = |µ(c)
π1 | equal to 0.0157, 0.0480, 0.0621

and 0.0661 m2 V−1 s−1 respectively, such that the in-plane re-
sistivity given by equation (4) turns out to be ρ(ab) = 1 µΩ cm
in all cases. In other words, from top to bottom the σ-bands
become increasingly dirty with respect to π-bands.

the saturation of magnetoresistivity is already evident, es-
pecially for large β values, while at the same fields in the
B⊥ab (ϑ = 90◦) configuration the magnetoresistivity is
still almost linear with B squared.

In equation (2) the quantity gi(B, ϑ) is related to the
cyclotron frequency of the ith band in the plane perpen-
dicular to the magnetic field ωi:

gi(B, ϑ) =
(
1 + µi(c)µi(ab)B

2 cos2(ϑ) + µ2
i(ab)B

2 sin2(ϑ)
)

= 1 + ω2
i τ2

i
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mi(ab)

√

sin2(ϑ) +
mi(ab)

mi(c)
cos2(ϑ). (5)

Indeed, for each ith band, the derivative of the area of
the Fermi surface cross-section with respect to the energy,
∂A(i)/∂ε is proportional to the cyclotron mass m

(i)
cycl in

the same plane. In turns, the cyclotron mass is inversely
related to the cyclotron frequency ωi, so that:

ωi =
(

2πeB

�2

)(
∂A(i)/∂ε

)−1

. (6)

The derivatives ∂A(i)/∂ε can be easily calculated in the
assumed approximation of ellipsoidal Fermi surface, giv-
ing the expression (5) for ωi(B, ϑ). When B⊥ab the only
relevant cyclotron frequencies are the in-plane ones

ωi⊥ =
eB

m
(i)
cycl⊥

=
eB

mi(ab)
,

whereas in the case B||ab the magnetoresistivity is mainly
determined by cyclotron frequencies

ωi|| =
eB

m
(i)
cycl||

=
eB√

mi(c)mi(ab)
.

For a very clean sample with comparable scattering times
in all the bands at low temperature (β close to unity),
the relative magnitudes of the cyclotron frequencies in
the different bands determine the angular dependence of
magnetoresistivity. When B⊥ab, the cyclotron frequency
ωi⊥ ∝ 1

mi(ab)
is larger for the σ-bands than for the π-

bands, as shown by the effective mass values listed in
Table 1. This can be understood physically, since the σ-
bands carriers orbit the small circumference of the tubular
Fermi surfaces, while the π-bands carriers orbit the large
circle of the honeycomb around the Γ point. The oppo-
site is true for B||ab, where the σ-band orbits are open
(our cyclotron mass is indeed very large and thereby the
cyclotron frequency ωi|| of σ-electron is very small) and
the π carriers orbit the small circumference of the tube
forming the honeycomb Fermi surfaces (larger cyclotron
frequency ωi|| of π-electrons). As a result, the magnetore-
sistivity is maximum in the B⊥ab configuration and it
decreases with decreasing angle ϑ. The above argument
is still true for samples with cleaner σ-bands (β smaller
than unity), but it reverses when transport occurs pre-
dominantly in π-bands (β significantly larger than unity).
In the latter limit, the magnetoresistivity is maximum for
ϑ = 0◦ and it decreases with increasing angle ϑ, due to the
larger cyclotron masses m

(π1)
cycl⊥ and m

(π2)
cycl⊥ with respect

to m
(π1)
cycl|| and m

(π2)
cycl|| (see the list of effective masses given

in Table 1, keeping in mind that m
(i)
cycl|| = √

mi(c)mi(ab),

while m
(i)
cycl⊥ = mi(ab)). This argument on the relative

magnitudes of these cyclotron masses explains also the
reason why, at large β, the saturation regime is reached
at smaller fields in the B||ab (ϑ = 0◦) configuration than
in the B⊥ab (ϑ = 90◦) configuration, being ωi|| larger
than ωi⊥ for π-bands.

The crossover between the magnetoresistivity in the
B||ab and B⊥ab configurations as a function of β has been
indeed experimentally observed by measuring magnetore-
sistivity at 42 K in magnetic fields up to 45 Tesla in films
with different amounts of disorder introduced by neutron
irradiation or carbon doping [12]. The crossover value of
β between the limiting cases of increasing and decreas-
ing ϑ-dependence of magnetoresistivity is somewhat larger
than unity, as it can be seen from Figure 1, in the case of
samples with resistivity ρ(ab) = 1 µΩ cm; this is due to the
fact that in-plane σ effective masses are smaller than in-
plane π effective masses, so that the product of cyclotron
frequencies and scattering times is nearly the same for the
two types of bands when β is slightly larger than unity.

As a consequence of the presence of open orbits in
the Fermi surface, it could happen that the experimen-
tal magnetoresistivity of clean samples does not satu-
rate even at very large fields. Of course this effect could
not be accounted for in our approximation of constant
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average mass tensor. However the fair agreement between
the results of this analytical model and experimental mea-
surements [12,14] indicates that neglecting the contribu-
tion of open orbits is acceptable.

It is very important to check the sensitivity of our ap-
proach to uncertainties in the effective masses relative val-
ues, keeping in mind that only the relative ratios between
them and not their absolute values enter the equations.
For example, a direct test shows that a 10% change in the
four σ effective masses with respect to the π ones yields a
variation in the calculated magnetoresistivity of 3% for B
parallel to the ab planes and 11% for B along the c axis,
whereas a 10% change in the four π effective masses with
respect to the σ ones yields a variation of the calculated
magnetoresistivity of 5% for B parallel to the ab planes
and 10% for B along the c axis. The effective mass val-
ues obtained from band structure calculations may indeed
suffer from systematic uncertainties, but it is not easy to
set a realistic upper limit to such error. Unfortunately,
experimental data of all the eight effective masses of the
four bands along ab planes and c axis are not available.
Measured values of mσ1(ab), mσ2(ab), m

(π1)
cycl|| and m

(π2)
cycl||

extracted from de Haas-van Alphen experiments [21] cor-
respond to mσ1(ab)/mσ2(ab) and m

(π1)
cycl||/mcycl||(π2) ratios

which agree within few percent with our calculated ratios;
instead, the ratios between measured σ effective masses
and π cyclotron masses differ significantly from the calcu-
lated ones. This discrepancy is not surprising if we con-
sider that the calculated masses are average values of the
inverse mass tensors taken over the Fermi surface while in
the case of de Haas-van Alphen experiments the masses
are those of the extremal orbits only. In the case of σ bands
for B perpendicular to the ab planes, the extremal or-
bits are representative of the whole Fermi surface, but the
same thing cannot be said of the tubular network shape
of π bands.

The curves shown in Figure 1 can be used to fit exper-
imental magnetoresistivity and resistivity data, thus ex-
tracting quite univocally the values of the scattering times
in the σ- and π-bands. This method can be used to study
the effect of disorder, irradiation and selective doping in
the two bands, which is a crucial issue in the research on
magnesium diboride. Also, transport as a function of tem-
perature can be studied: the measurement of magnetore-
sistivity curves with increasing temperature allows to ex-
tract the values of the scattering rates in σ- and π-bands in
different temperature regimes where either impurity scat-
tering or phonon scattering dominate. For example, it is
expected that a clean sample with comparable scattering
times in the two types of bands at low temperature will
exhibit the crossover between larger magnetoresistivity for
B⊥ab and for B||ab with increasing temperature, due to
the much stronger coupling of σ carriers with phonons,
which switches the conduction from the σ to the π channel
with increasing temperature. Such measurements require
highly oriented epitaxial films. Moreover, unless the films
are extremely clean, large magnetic fields must be reached
to observe a significant magnetoresistivity.

Fig. 2. Angular dependence of magnetoresistivity for B =
9 T, 20 T and 45 T and for the same parameters of Figure 1,
that is β = τπ/τσ equal to 0.2, 1.5, 5.0 and 10.0 from the

top panel to the bottom one and α = |µ(c)
π1 | equal to 0.0157,

0.0480, 0.0621 and 0.0661 m2 V−1 s−1 respectively, such that
the in-plane resistivity given by equation (4) turns out to be
ρ(ab) = 1 µΩ cm in all cases.

For a closer inspection of the angular dependence of
magnetoresistivity, in Figure 2 we plot magnetoresistivity
as a function of ϑ for different values of magnetic fields,
namely B = 9 T, B = 20 T and B = 45 T, which are typ-
ical values of field easily reached by commercial supercon-
ducting magnets, copper magnets and pulsed magnets, re-
spectively. Again, the parameter β increases from the top
to the bottom panel, that is with the σ-bands becoming
increasingly dirty with respect to the π ones. The curves
reproduce very well the experimental behaviour [14]: at
low β (cleaner σ-bands) the magnetoresistivity increases
with ϑ, at large enough β (cleaner π-bands) it decreases
with ϑ and at intermediate β close to unity it shows a
non monotonic behaviour, with a maximum whose angu-
lar position depends not only on the parameters β and
α, but also on the intensity of the magnetic field. Indeed,
the results at different fields are qualitatively very similar,
except for the magnetoresistivity absolute value which is
obviously larger at larger fields and for the position of the
maximum, whose shift to smaller angles with increasing β
is faster at small fields and slowest at larger fields, where
the saturation regime in the B||ab (ϑ = 0◦) configuration
is well reached.

We note that as a consequence of the anisotropic ef-
fective mass, even in the case that the applied current is
parallel to the magnetic field there would exist a non zero
magnetoresistivity (ρ||B(B) − ρ||B(B = 0))/ρ||B(B = 0)
(see configuration (3) in Fig. 3c) [22]. This is due to the
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Fig. 3. Schematic sketches of the magnetic field and current
orientation with respect to the crystalline axes in the case of
(a) transverse magnetoresistivity with the current density in
the ab planes, (b) transverse magnetoresistivity with the cur-
rent density in the plane of B and the c axis, (c) longitudinal
magnetoresistivity. In the (d) panel, the magnetoresistivity in
the three configurations is plotted as a function of the angle ϑ
between the magnetic field and the ab planes for B = 45 T and
for 3 different values of the parameter β = τπ/τσ equal to 0.2,

1.5, and 5.0 and for values of the parameter α = |µ(c)
π1 | equal

to 0.0157, 0.0480, and 0.0621 m2 V−1 s−1 respectively, such
that the in-plane resistivity turns out to be ρ(ab) = 1 µΩ cm in
all cases. The curves corresponding to the transverse configu-
ration (1) are portions of the plots of Figure 2, for B = 45 T,
in the range of ϑ between 0 and 90◦.

tensorial relationship between the current density and the
electric field, which couples all the three spatial compo-
nents of equation (1). In Figure 3d, this longitudinal mag-
netoresistivity is plotted as a function of the angle ϑ be-
tween the ab planes and the direction parallel to both
the magnetic field and the applied current, for B = 45 T
and for three values of the parameter β (also in this case

the corresponding values of the parameter α = |µ(c)
π | are

fixed in such a way that the in-plane resistivity turns out
to be ρ(ab) = 1 µΩ cm in all cases). It can be seen that
it vanishes in the limiting cases ϑ = 0◦ and ϑ = 90◦,
but it assumes finite values at intermediate angles, be-
ing larger for small values of β. This is indeed expected,
because this is an effect related to the anisotropic conduc-
tivity and it is enhanced when transport occurs mainly in
the σ-bands (low β) which are the most anisotropic. For
comparison, the longitudinal magnetoresistivity is plotted
together with the above described transverse magnetore-
sistivity (configuration (1) in Fig. 3a), for the same values
of B and β. It can be seen that the longitudinal contribu-
tion is not negligible, especially for small β; in particular,
for ϑ ∼ 30◦, β = 2 and B = 45 T the longitudinal magne-
toresistivity is only 2.5 times smaller than the transverse
magnetoresistivity in configuration (1). Instead, for larger
β and/or for ϑ approaching 0◦ or 90◦ the longitudinal
magnetoresistivity becomes vanishing small. Even if it is
apparent that it is impossible in practice to realise an ex-
perimental configuration with the applied magnetic field
and current forming an angle ϑ with ab crystalline planes
in a single crystal or in a c-oriented MgB2 film, there exists
the possibility of setting up such configuration in epitaxial
films whose c axis is not parallel to the growth direction,
such as in the case of films grown on Yttrium Stabilised
Zirconia substrates, whose c axis is tilted by 58 degrees
with respect to the substrate plane [23].

Besides the above described longitudinal and trans-
verse configurations, there exists a third possible trans-
verse configuration, indicated as configuration (2) in Fig-
ure 3b, where the applied current is perpendicular to B
and forms an angle (ϑ−π/2) with the ab planes. As seen in
Figure 3d, the transverse magnetoresistivity in this con-
figuration (2) merges with the one in configuration (1)
when ϑ approaches 90◦ as expected, because when B is
perpendicular to the ab planes the system has cylindrical
symmetry and the two configurations are indistinguish-
able. At smaller ϑ, instead, the current direction is nearly
parallel to the c axis; if transport occurs mainly in σ-
bands (small β), the magnetoresistivity is smaller in the
transverse configuration (2), due to the smaller zero field
conductivity along the c axis in σ-bands, while if trans-
port occurs mainly in π-bands (large β), it is smaller in
the transverse configuration (1), due to the larger zero
field conductivity along the c axis in π-bands.

4 Magnetoresistivity of polycrystalline
samples

Let us consider the case of polycrystalline samples. In
polycrystals, the ab planes of each grain are randomly
oriented with respect to the magnetic field and the lo-
cal percolative current density forms an arbitrary angle
with the magnetic field. A quantitative analysis of trans-
verse magnetoresistivity in polycrystals has been carried
out within an average isotropic effective mass approxima-
tion [11]. This isotropic approach yields zero longitudinal
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2
i(ab)B
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1 + µi(c)µi(ab)B2 cos2(ϑ) + µ2

i(ab)
B2 sin2(ϑ)

)

⎞

⎠ cos(ϑ)dϑ (7)

magnetoresistivity. Here, we go beyond this approxima-
tion and we show that in certain cases the isotropic ap-
proach is inadequate in describing the magnetoresistivity
behaviour. Indeed, non vanishing longitudinal magnetore-
sistivity has been observed in polycrystalline metals with
anisotropic Fermi surface shape [24].

Starting from equation (1), we assume again an
anisotropic mass tensor and a homogeneous electric field,
that is a local electric field parallel to the average electric
field. The latter simplification is valid only in the case of
extremely dense samples with high intergrain connectivity.
In the opposite limit, the local electric field is determined
for each grain also by the shape of the grain itself as well
as by the number of adjacent neighbouring grains, which
makes the problem very complicated to treat. We con-
sider an arbitrary angle ϑ between B and the ab planes
and we calculate the current density J along any arbitrary
direction. After averaging over ϑ, the transverse magne-
toresistivity is obtained by imposing that the average J is
zero along the direction parallel to B, while the longitu-
dinal magnetoresistivity is obtained by imposing that the
average J is zero in the plane perpendicular to B. In the
general case the expression for the inverse resistivity is:

ρ(B, δ)−1 =
R
[
P 2 + Q2

]

sin2(δ)P R + cos2(δ) [P 2 + Q2]

where

see equation (7) above.

Here δ is the angle between the magnetic field B and the
macroscopic applied current J (δ = 0◦ for longitudinal
magnetoresistivity and δ = 90◦ for transverse magnetore-
sistivity). In Figure 4a the longitudinal and transverse
magnetoresistivities of bulk samples are plotted as contin-
uous lines for three values of the parameter β (again, the
values of the parameter α = |µ(c)

π1 | are fixed in such a way
that the zero field resistivity turns out to be 1 µΩ cm in all
cases). The transverse magnetoresistivity (J⊥B) slightly
increases with increasing β, because at low β transport is
dominated by σ-bands and the low mobility of σ carriers
along the cdirection suppresses the average magnetore-
sistivity. The longitudinal magnetoresistivity (J||B) tends

to vanish at large β, because when transport is dominated
by π-bands the system is close to be isotropic; on the con-
trary a significant longitudinal magnetoresistivity exists
for small β. As a consequence of the above described ar-
gument, the magnetoresistivity dependence on the angle
δ between the magnetic field and the applied current den-
sity is steeper for large β and smoother for low β, as shown
in Figure 4b.

Oppositely, in the isotropic approximation, assuming
for each ith band a diagonal mass tensor whose inverse
elements are defined as:

1
mi

=
2/mi(ab) + 1/mi(c)

3
, i = π1,π2, σ1 or σ2 (8)

the isotropic inverse resistivity as a function of the angle
δ between J and B is expressed as:

ρ(B, δ)−1 =
V
[
S2 + T 2

]

sin2(δ) S V + cos2(δ) [S2 + T 2]

where

S(B) =
∑

i=π1,π2,σ1,σ2

σi

1 + µ2
i B

2

T (B) =
∑

i=π1,π2,σ1,σ2

σiµiB

1 + µ2
i B

2

V =
∑

i=π1,π2,σ1,σ2

σi. (9)

It is clearly seen that the resistivity in the direction of the
magnetic field (δ = 0◦) does not depend on B itself, yield-
ing zero longitudinal magnetoresistivity. For comparison,
in Figures 4a and 4b the dotted curves calculated within
the isotropic approximation are shown. In Figure 4a it can
be seen that the isotropic approximation tends to overes-
timate the transverse magnetoresistivity in all cases and
for β values larger than 1.5 the isotropic magnetoresistiv-
ity depends very weakly on β. Moreover the isotropic ap-
proach predicts zero longitudinal magnetoresistivity, while
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Fig. 4. Upper panel: transverse (J⊥B, δ = 90◦) and longitu-
dinal (J||B, δ = 0◦) magnetoresistivity curves of bulk samples
for 3 different values of the parameter β = τπ/τσ equal to 0.2,

1.5, and 5.0 and for values of the parameter α = |µ(c)
π1 | equal

to 0.0193, 0.0434, and 0.0501 m2 V−1 s−1 respectively, such
that the zero field bulk resistivity turns out to be 1 µΩ cm
in all cases; the curves are calculated either by taking into ac-
count the anisotropy of the randomly oriented grains (continu-
ous lines) or within a isotropic approximation (open symbols).
Lower panel: magnetoresistivity of bulk samples at B = 45 T
and for the same parameters as above as a function of the an-
gle δ between the magnetic field and the applied current den-
sity, calculated either by taking into account the anisotropy
of the randomly oriented grains (continuous lines) or within a
isotropic approximation (open symbols).

within the anisotropic averaged approach the longitudinal
magnetoresistivity may turn out to be comparable to the
transverse magnetoresistivity, especially for low β; for ex-
ample, in the uppermost panel of Figure 4a the ratio of
the two magnetoresistivities is nearly 2.3. Consistently, in
Figure 4b the angular dependence of the isotropic magne-
toresistivity curves (dotted curves) is steeper, because the
isotropic approximation predicts zero longitudinal contri-
bution and it overestimates the transverse contribution.

This result is particularly noteworthy, in that the com-
bined measurement of transverse and longitudinal mag-
netoresistivity in bulk samples provides enough input to

extract unambiguously the β parameter, even if the sam-
ple resistivity is not known, due to the uncertainty on
the geometrical factor. Indeed, to the best of our knowl-
edge, no combined measurement of transverse and longi-
tudinal magnetoresistivity in bulk samples have ever been
presented in literature; we propose to carry out such ex-
periment in order to characterise the scattering rates in
different bands in MgB2 bulk samples. This requires of
course either very clean samples or very large magnetic
fields. In addition, in order to apply equations (7), the
samples should have high density and intergrain connec-
tivity as well; otherwise, the assumption of homogeneous
electric field fails, as long as the local electric field is not
parallel to the average one, being determined by the grain
shape, the connected adjacent grains and the conductiv-
ity mismatch at the interface between differently oriented
adjacent grains.

5 Conclusions

We demonstrate that experimental findings on magne-
sium diboride normal state magnetoresistivity can be well
accounted for within a cyclotron orbits scenario, in the
free electron approximation, assuming a constant average
mass tensor with different in-plane and out-of-plane com-
ponents. Starting from the Boltzmann equation, we ex-
tract an analytic expression for the transverse magnetore-
sistivity, which allows to extract easily and univocally the
scattering times in the σ- and π-bands from experimen-
tal data. We discuss the angular dependence of transverse
and longitudinal magnetoresistivity in terms of the shape
of the four-sheet Fermi surface of magnesium diboride. We
extend this approach to polycrystalline samples by suit-
ably averaging the anisotropy of each randomly oriented
grain and we extract simple expressions for transverse and
longitudinal magnetoresistivity.

Finally, we propose magnetoresistivity measurements
with the current either parallel or perpendicular to the
magnetic field as a univocal method to extract the scatter-
ing times in the two types of bands of magnesium diboride
films, single crystal and polycrystalline samples. The mag-
netoresistivity can be measured at different temperatures,
allowing to extract the temperature dependence of the
scattering rates as well.
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